Optimal Lower Power Mean Bound for the Convex Combination of Harmonic and Logarithmic Means

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Lower Power Mean Bound for the Convex Combination of Harmonic and Logarithmic Means

and Applied Analysis 3 Alzer and Qiu 27 found the sharp bound of 1/2 L a, b I a, b in terms of the power mean as follows: Mc a, b < 1 2 L a, b I a, b 1.8 for all a, b > 0 with a/ b, with the best possible parameter c log 2/ 1 log 2 . The main purpose of this paper is to find the least value λ ∈ 0, 1 and the greatest value p p α such that αH a, b 1 − α L a, b > Mp a, b for α ∈ λ, 1 and all a, b ...

متن کامل

Optimal inequalities for the power, harmonic and logarithmic means

For all $a,b>0$, the following two optimal inequalities are presented: $H^{alpha}(a,b)L^{1-alpha}(a,b)geq M_{frac{1-4alpha}{3}}(a,b)$ for $alphain[frac{1}{4},1)$, and $ H^{alpha}(a,b)L^{1-alpha}(a,b)leq M_{frac{1-4alpha}{3}}(a,b)$ for $alphain(0,frac{3sqrt{5}-5}{40}]$. Here, $H(a,b)$, $L(a,b)$, and $M_p(a,b)$ denote the harmonic, logarithmic, and power means of order $p$ of two positive numbers...

متن کامل

Optimal convex combinations bounds of centrodial and harmonic means for logarithmic and identric means

We find the greatest values $alpha_{1} $ and $alpha_{2} $, and the least values $beta_{1} $ and $beta_{2} $ such that the inequalities $alpha_{1} C(a,b)+(1-alpha_{1} )H(a,b)

متن کامل

optimal inequalities for the power, harmonic and logarithmic means

for all $a,b>0$, the following two optimal inequalities are presented: $h^{alpha}(a,b)l^{1-alpha}(a,b)geq m_{frac{1-4alpha}{3}}(a,b)$ for $alphain[frac{1}{4},1)$, and $ h^{alpha}(a,b)l^{1-alpha}(a,b)leq m_{frac{1-4alpha}{3}}(a,b)$ for $alphain(0,frac{3sqrt{5}-5}{40}]$. here, $h(a,b)$, $l(a,b)$, and $m_p(a,b)$ denote the harmonic, logarithmic, and power means of order $p$ of two positive numbers...

متن کامل

The Optimal Upper and Lower Power Mean Bounds for a Convex Combination of the Arithmetic and Logarithmic Means

and Applied Analysis 3 Lemma 2.1. If α ∈ 0, 1 , then 1 2α log 2 − logα > 3 log 2. Proof. For α ∈ 0, 1 , let f α 1 2α log 2 − logα , then simple computations lead to f ′ α 2 ( log 2 − 1 − 2 logα − 1 α , 2.1 f ′′ α 1 α2 1 − 2α . 2.2 From 2.2 we clearly see that f ′′ α > 0 for α ∈ 0, 1/2 , and f ′′ α < 0 for α ∈ 1/2, 1 . Then from 2.1 we get f ′ α ≤ f ′ ( 1 2 ) 4 ( log 2 − 1 < 0 2.3 for α ∈ 0, 1 ....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Abstract and Applied Analysis

سال: 2011

ISSN: 1085-3375,1687-0409

DOI: 10.1155/2011/520648